Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.1 - Using Basic Integration Formulas - Exercises 8.1 - Page 448: 5

Answer

$$\int \frac{1-x}{\sqrt{1-x^{2}}}dx=arcsin\,x+\sqrt{1-x^{2}}+C$$

Work Step by Step

$$\int \frac{1-x}{\sqrt{1-x^{2}}}dx=\int \frac{1}{\sqrt{1-x^{2}}}dx-\int \frac{x}{\sqrt{1-x^{2}}}dx$$ $$=arcsin\,x+C_{1}+\frac{1}{2}\int \frac{d(1-x^{2})}{\sqrt{1-x^{2}}}$$ $$=arcsin\,x+C_{1}+\frac{1}{2}\int (1-x^{2})^{-\frac{1}{2}} d(1-x^{2})$$ $$=arcsin\,x+\sqrt{1-x^{2}}+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.