Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.1 - Using Basic Integration Formulas - Exercises 8.1 - Page 448: 21

Answer

$$\int \frac{16 t+4 t^{3} -t^{2}}{t^{2}+4} dt =2 t^{2}-t+2 \tan^{-1}\frac{t}{2}+C\\$$

Work Step by Step

Given $$\int \frac{16 t+4 t^{3} -t^{2}}{t^{2}+4} dt $$ So, we have \begin{aligned} I&=\int \frac{16 t+4 t^{3} -t^{2}}{t^{2}+4} d t\\ &=\int \frac{4 t\left(4+t^{2}\right)-t^{2}}{\left(t^{2}+4\right)} d t\\ &=\int 4 t d t-\int \frac{t^{2}}{\left(t^{2}+4\right)} d t\\ &=4 \cdot \frac{t^{2}}{2}-\int \frac{\left(t^{2}+4\right)-4}{\left(t^{2}+4\right)} d t\\ &=2 t^{2}-\int d t+4 \int \frac{d t}{t^{2}+4}\\ &\text{since}\int \frac{d t}{z^{2}+a^2}= \frac{1}{a} \tan^{-1}\frac{z}{a}, \ \text{so, we get}\\ I&=2 t^{2}-t+\frac{4}{2} \tan^{-1}\frac{t}{2}+C\\ &=2 t^{2}-t+2 \tan^{-1}\frac{t}{2}+C\\ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.