Answer
$$\int_{\pi/4}^{\pi/3}\frac{dx}{cos^{2}x\,tan\,x}=\frac{ln3}{2}$$
Work Step by Step
$$\int_{\pi/4}^{\pi/3}\frac{dx}{cos^{2}x\,tan\,x}=\int_{\pi/4}^{\pi/3}\frac{sec^{2}x}{tan\,x}dx$$
$$=\int_{\pi/4}^{\pi/3}\frac{d(tan\,x)}{tan\,x}$$
$$=\left | ln(tan\,x) \right |_{\pi/4}^{\pi/3}$$
$$=ln\sqrt{3}-ln1$$
$$=\frac{ln3}{2}$$