Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.1 - Using Basic Integration Formulas - Exercises 8.1 - Page 448: 4

Answer

$$\int_{\pi/4}^{\pi/3}\frac{dx}{cos^{2}x\,tan\,x}=\frac{ln3}{2}$$

Work Step by Step

$$\int_{\pi/4}^{\pi/3}\frac{dx}{cos^{2}x\,tan\,x}=\int_{\pi/4}^{\pi/3}\frac{sec^{2}x}{tan\,x}dx$$ $$=\int_{\pi/4}^{\pi/3}\frac{d(tan\,x)}{tan\,x}$$ $$=\left | ln(tan\,x) \right |_{\pi/4}^{\pi/3}$$ $$=ln\sqrt{3}-ln1$$ $$=\frac{ln3}{2}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.