Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.1 - Using Basic Integration Formulas - Exercises 8.1 - Page 448: 11

Answer

$\pi$

Work Step by Step

$\int\frac{4\,dx}{1+(2x+1)^{2}}=4\int\frac{\,dx}{1+(2x+1)^{2}}$ Substituting $u=2x+1$ so that $dx=\frac{du}{2}$, we have $4\int\frac{\,dx}{(2x+1)^{2}+1}=4\times\frac{1}{2}\int\frac{du}{u^{2}+1}=2\tan^{-1}(u)+C$ $=2\tan^{-1}(2x+1)+C$ Therefore $\int^{0}_{-1}\int\frac{4\,dx}{1+(2x+1)^{2}}=[2\tan^{-1}(2x+1)]^{0}_{-1}$ $=2\times\tan^{-1}(1)-2\times\tan^{-1}(-1)=2\times\frac{\pi}{4}-(2\times-\frac{\pi}{4})=\pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.