Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.1 - Using Basic Integration Formulas - Exercises 8.1 - Page 448: 22

Answer

$$\int \frac{x+2 \sqrt{x-1}}{2 x \sqrt{x-1}} d x=\sqrt{(x-1)}+\ln x+c $$

Work Step by Step

Given $$\int \frac{x+2 \sqrt{x-1}}{2 x \sqrt{x-1}} d x $$ So, we have \begin{aligned} I&=\int \frac{x+2 \sqrt{x-1}}{2 x \sqrt{x-1}} d x\\ &=\int \frac{x d x}{2 x \sqrt{x-1}}+\int \frac{2 \sqrt{x-1} d x}{2 x \sqrt{x-1}} d x\\ &=\int \frac{d x}{2 \sqrt{x-1}}+\int \frac{d x}{x}\\ &=\frac{(x-1)^{-1 / 2+1}}{2(1/2)}+\ln x+c\\ &=\sqrt{(x-1)}+\ln x+c \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.