Answer
$2 \ln|\sqrt {x}-1|+C$
Work Step by Step
$\int \frac{dx}{x-\sqrt x}=\int\frac{dx}{\sqrt x(\sqrt x-1)}$
Put $t= \sqrt {x}-1$
Then $dx= 2\sqrt x dt$
Therefore, $\int \frac{dx}{x-\sqrt x}= 2\int \frac{1}{t}dt$
$= 2\times\ln|t|+C= 2 \ln|\sqrt {x}-1|+C$