Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.6 - The Chain Rule - Exercises 3.6 - Page 149: 66

Answer

$1$

Work Step by Step

$(fog)'(x)$ = $f'(g(x))g'(x)$ $g(x)$ = $\frac{1}{1-x}$ $g(-1)$ = $\frac{1}{1+1}$ = $\frac{1}{2}$ $g'(x)$ = $\frac{1}{(1-x)^{2}}$ $g'(-1)$ = $\frac{1}{(1+1)^{2}}$ = $\frac{1}{4}$ $f(u)$ = $1-\frac{1}{u}$ $f'(u)$ = $\frac{1}{u^{2}}$ $f'(u)$ = $f'(g(x))$ = $\frac{1}{(\frac{1}{1-x})^{2}}$ = $(1-x)^{2}$ $f'(g(-1))$ = $(1+1)^{2}$ = $4$ $(fog)'(-1)$ = $f'(g(-1))g'(-1)$ = $(4)$$(\frac{1}{4})$ = $1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.