Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.6 - The Chain Rule - Exercises 3.6 - Page 149: 40

Answer

$\frac{dq}{dt}$ = $\frac{[sint - t(cost)]}{t^{2}}$ $csc^{2}(\frac{sint}{t})$

Work Step by Step

$q$ = $cot$($\frac{sint}{t}$) differentiate with respect to x $\frac{dq}{dt}$ = $\frac{d}{dt}$[$cot$($\frac{sint}{t}$)] solve derivatives using the chain rule for $\frac{dq}{dt}$ = -$csc^{2}(\frac{sint}{t})$ $\frac{d}{dt}$[$\frac{sint}{t}]$ $\frac{dq}{dt}$ = -$csc^{2}(\frac{sint}{t})$ $\frac{[(t)\frac{d}{dt}(sint) - (sint)\frac{d}{dt}(t)]}{t^{2}}$ $\frac{dq}{dt}$ = -$csc^{2}(\frac{sint}{t})$ $\frac{[(t)(cost) - (sint)(1)]}{t^{2}}$ $\frac{dq}{dt}$ = $\frac{[sint - t(cost)]}{t^{2}}$ $csc^{2}(\frac{sint}{t})$ simplify $\frac{dq}{dt}$ = $\frac{[sint - t(cost)]}{t^{2}}$ $csc^{2}(\frac{sint}{t})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.