Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.6 - The Chain Rule - Exercises 3.6 - Page 149: 45

Answer

$$\frac{{dy}}{{dt}} = 10{\left( {t\tan t} \right)^9}\left( {t{{\sec }^2}t + \tan t} \right)$$

Work Step by Step

$$\eqalign{ & y = {\left( {t\tan t} \right)^{10}} \cr & {\text{differentiate with respect to }}t \cr & \frac{{dy}}{{dt}} = \frac{d}{{dt}}\left[ {{{\left( {t\tan t} \right)}^{10}}} \right] \cr & {\text{use the chain rule }}\frac{d}{{dt}}\left[ {{u^n}} \right] = n{u^{n - 1}}\frac{{du}}{{dt}} \cr & \frac{{dy}}{{dt}} = 10{\left( {t\tan t} \right)^9}\frac{d}{{dt}}\left[ {t\tan t} \right] \cr & {\text{use the product rule}} \cr & \frac{{dy}}{{dt}} = 10{\left( {t\tan t} \right)^9}\left( {t\frac{d}{{dt}}\left[ {\tan t} \right] + \tan t\frac{d}{{dt}}\left[ t \right]} \right) \cr & {\text{solve derivatives and simplify}} \cr & \frac{{dy}}{{dt}} = 10{\left( {t\tan t} \right)^9}\left( {t\left( {{{\sec }^2}t} \right) + \tan t\left( 1 \right)} \right) \cr & \frac{{dy}}{{dt}} = 10{\left( {t\tan t} \right)^9}\left( {t{{\sec }^2}t + \tan t} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.