Answer
$\frac{dy}{dt}$ = $(2\pi)$ $sin[\pi(t)-2]$ $cos[\pi(t)-2]$
Work Step by Step
$y$ = $sin^{2}[\pi(t)-2]$
$\frac{dy}{dt}$ = $\frac{d}{dt}$ [$sin^{2}[\pi(t)-2]$]
$\frac{dy}{dt}$ = $(2)sin[\pi(t)-2]$ $\frac{d}{dt}$$sin[\pi(t)-2]$
$\frac{dy}{dt}$ = $(2)sin[\pi(t)-2]$ $cos[\pi(t)-2]$ $\frac{d}{dt}$ $[\pi(t)-2]$
$\frac{dy}{dt}$ = $(2)sin[\pi(t)-2]$ $cos[\pi(t)-2]$ ($\pi$)
$\frac{dy}{dt}$ = $(2\pi)$ $sin[\pi(t)-2]$ $cos[\pi(t)-2]$