Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.6 - The Chain Rule - Exercises 3.6 - Page 149: 41

Answer

$\frac{dy}{dt}$ = $(2\pi)$ $sin[\pi(t)-2]$ $cos[\pi(t)-2]$

Work Step by Step

$y$ = $sin^{2}[\pi(t)-2]$ $\frac{dy}{dt}$ = $\frac{d}{dt}$ [$sin^{2}[\pi(t)-2]$] $\frac{dy}{dt}$ = $(2)sin[\pi(t)-2]$ $\frac{d}{dt}$$sin[\pi(t)-2]$ $\frac{dy}{dt}$ = $(2)sin[\pi(t)-2]$ $cos[\pi(t)-2]$ $\frac{d}{dt}$ $[\pi(t)-2]$ $\frac{dy}{dt}$ = $(2)sin[\pi(t)-2]$ $cos[\pi(t)-2]$ ($\pi$) $\frac{dy}{dt}$ = $(2\pi)$ $sin[\pi(t)-2]$ $cos[\pi(t)-2]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.