Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.6 - The Chain Rule - Exercises 3.6 - Page 149: 51

Answer

$\frac{dy}{dt}$ = $(1+tan^{4}(\frac{t}{12}))^{2}$$(tan^{3}(\frac{t}{12}))$($sec^{2}(\frac{t}{12})$)

Work Step by Step

$y$ = $(1+tan^{4}(\frac{t}{12}))^{3}$ $\frac{dy}{dt}$ = $\frac{d}{dt}$$(1+tan^{4}(\frac{t}{12}))^{3}$ $\frac{dy}{dt}$ = $3(1+tan^{4}(\frac{t}{12}))^{2}$ $\frac{d}{dt}$$(1+tan^{4}(\frac{t}{12}))$ $\frac{dy}{dt}$ = $3(1+tan^{4}(\frac{t}{12}))^{2}$$(4tan^{3}(\frac{t}{12}))$ $\frac{d}{dt}$$(tan(\frac{t}{12}))$ $\frac{dy}{dt}$ = $3(1+tan^{4}(\frac{t}{12}))^{2}$$(4tan^{3}(\frac{t}{12}))$$sec^{2}(\frac{t}{12})$ $\frac{d}{dt}$$(\frac{t}{12})$ $\frac{dy}{dt}$ = $3(1+tan^{4}(\frac{t}{12}))^{2}$$(4tan^{3}(\frac{t}{12}))$($sec^{2}(\frac{t}{12})$)$(\frac{1}{12})$ $\frac{dy}{dt}$ = $(1+tan^{4}(\frac{t}{12}))^{2}$$(tan^{3}(\frac{t}{12}))$($sec^{2}(\frac{t}{12})$)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.