Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.6 - The Chain Rule - Exercises 3.6 - Page 149: 54

Answer

$\frac{dy}{dt}$ = $\frac{cos(\sqrt {1+\sqrt t})}{{\sqrt {t+t\sqrt t})}}$

Work Step by Step

$y$ = $4sin(\sqrt {1+\sqrt t})$ $\frac{dy}{dt}$ = $\frac{d}{dt}$$4sin(\sqrt {1+\sqrt t})$ $\frac{dy}{dt}$ = $4cos(\sqrt {1+\sqrt t})$ $\frac{d}{dt}$$(\sqrt {1+\sqrt t})$ $\frac{dy}{dt}$ = $4cos(\sqrt {1+\sqrt t})$[$\frac{1}{2\sqrt {1+\sqrt t})}$] $\frac{d}{dt}$ ($1+\sqrt t$) $\frac{dy}{dt}$ = $4cos(\sqrt {1+\sqrt t})$[$\frac{1}{2\sqrt {1+\sqrt t})}$][$\frac{1}{2\sqrt t}$] $\frac{dy}{dt}$ = $cos(\sqrt {1+\sqrt t})$[$\frac{1}{\sqrt {t+t\sqrt t})}$] $\frac{dy}{dt}$ = $\frac{cos(\sqrt {1+\sqrt t})}{{\sqrt {t+t\sqrt t})}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.