Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.6 - The Chain Rule - Exercises 3.6 - Page 149: 65

Answer

$\frac{5}{2}$

Work Step by Step

$(fog)'$ = $f'(g(x))g'(x)$ $(fog)'(1)$ = $f'(g(1))g'(1)$ $g(x)$ = $\sqrt x$ $g(1)$ = $\sqrt 1$ = $1$ $g'(x)$ = $\frac{1}{2\sqrt x}$ $g'(1)$ = $\frac{1}{2\sqrt 1}$ = $\frac{1}{2}$ $f(u)$ = $u^{5}+1$ $f'(u)$ = $5u^{4}$ $u$ = $g(x)$ = $\sqrt x$ $f'(u)$ = $f'(g(x))$ = $5(\sqrt x)^{4}$ = $5x^{2}$ $f'(g(1))$ = $5(^1){2}$ = $5$ $(fog)'(1)$ = $f'(g(1))g'(1)$ = $(5)$$(\frac{1}{2})$ = $\frac{5}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.