Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.6 - The Chain Rule - Exercises 3.6 - Page 149: 42

Answer

$\frac{dy}{dt}$ = $(2\pi)sec^{2}[\pi(t)]$$tan[\pi(t)]$

Work Step by Step

$y$ = $sec^{2}[\pi(t)]$ $\frac{dy}{dt}$ = $\frac{d}{dt}$ [$sec^{2}[\pi(t)]$] $\frac{dy}{dt}$ = $(2)sec[\pi(t)]$] $\frac{d}{dt}$[$sec[\pi(t)]$] $\frac{dy}{dt}$ = $(2)sec[\pi(t)]$] [$sec[\pi(t)]tan[\pi(t)]$ $\frac{d}{dt}$$[\pi(t)]$ $\frac{dy}{dt}$ = $(2)sec[\pi(t)]$] [$sec[\pi(t)]tan[\pi(t)]$ $(\pi)$ $\frac{dy}{dt}$ = $(2\pi)sec^{2}[\pi(t)]$$tan[\pi(t)]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.