Answer
$\frac{dy}{dt}$ = $(2\pi)sec^{2}[\pi(t)]$$tan[\pi(t)]$
Work Step by Step
$y$ = $sec^{2}[\pi(t)]$
$\frac{dy}{dt}$ = $\frac{d}{dt}$ [$sec^{2}[\pi(t)]$]
$\frac{dy}{dt}$ = $(2)sec[\pi(t)]$] $\frac{d}{dt}$[$sec[\pi(t)]$]
$\frac{dy}{dt}$ = $(2)sec[\pi(t)]$] [$sec[\pi(t)]tan[\pi(t)]$ $\frac{d}{dt}$$[\pi(t)]$
$\frac{dy}{dt}$ = $(2)sec[\pi(t)]$] [$sec[\pi(t)]tan[\pi(t)]$ $(\pi)$
$\frac{dy}{dt}$ = $(2\pi)sec^{2}[\pi(t)]$$tan[\pi(t)]$