Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.6 - The Chain Rule - Exercises 3.6 - Page 149: 44

Answer

$\frac{dy}{dt}$ = $\frac{csc^{2}(\frac{t}{2})}{[1+cot(\frac{t}{2})]^{3}}$

Work Step by Step

$y$ = $[1+cot(\frac{t}{2})]^{-2}$ $\frac{dy}{dt}$ = $\frac{d}{dt}$$[1+cot(\frac{t}{2})]^{-2}$ $\frac{dy}{dt}$ = $(-2)[1+cot(\frac{t}{2})]^{-3}$ $\frac{d}{dt}$$[1+cot(\frac{t}{2})]$ $\frac{dy}{dt}$ = $(-2)[1+cot(\frac{t}{2})]^{-3}$$[-csc^{2}(\frac{t}{2})]$ $\frac{d}{dt}$($\frac{t}{2})$ $\frac{dy}{dt}$ = $(-2)[1+cot(\frac{t}{2})]^{-3}$$[-csc^{2}(\frac{t}{2})]$($\frac{1}{2})$ $\frac{dy}{dt}$ = $[csc^{2}(\frac{t}{2})]$$[1+cot(\frac{t}{2})]^{-3}$ $\frac{dy}{dt}$ = $\frac{csc^{2}(\frac{t}{2})}{[1+cot(\frac{t}{2})]^{3}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.