Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.6 - The Chain Rule - Exercises 3.6 - Page 149: 48

Answer

$\frac{dy}{dt}$ = $\frac{-130(5t+2)^{4}}{(3t-4)^{6}}$

Work Step by Step

$y$ = $(\frac{3t-4}{5t+2})^{-5}$ $\frac{dy}{dt}$ = $(-5)(\frac{3t-4}{5t+2})^{-6}$ $\frac{d}{dt}$$(\frac{3t-4}{5t+2})$ $\frac{dy}{dt}$ = $(-5)(\frac{3t-4}{5t+2})^{-6}$ [$\frac{(5t+2)\frac{d}{dt}(3t-4) - (3t-4)\frac{d}{dt}(5t+2)}{(5t+2)^{2}}$] $\frac{dy}{dt}$ = $(-5)(\frac{3t-4}{5t+2})^{-6}$ [$\frac{(5t+2)(3) - (3t-4)(5)}{(5t+2)^{2}}$] $\frac{dy}{dt}$ = $(-5)(\frac{3t-4}{5t+2})^{-6}$ [$\frac{15t+6-15t+20}{(5t+2)^{2}}$] $\frac{dy}{dt}$ = $(-5)(\frac{3t-4}{5t+2})^{-6}$ [$\frac{26}{(5t+2)^{2}}$] $\frac{dy}{dt}$ = $(-5)\frac{(5t+2)^{6}}{(3t-4)^{6}}$ [$\frac{26}{(5t+2)^{2}}$] $\frac{dy}{dt}$ = $\frac{-130(5t+2)^{4}}{(3t-4)^{6}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.