Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.6 - The Chain Rule - Exercises 3.6 - Page 149: 62

Answer

$y''$ = $2sec^{2}(\frac{x}{3})tan(\frac{x}{3})$

Work Step by Step

$y$ = $9tan(\frac{x}{3})$ $y'$ = $\frac{d}{dx}$[$9tan(\frac{x}{3})$] $y'$ = $9sec^{2}(\frac{x}{3})$ $\frac{d}{dx}$$(\frac{x}{3})$ $y'$ = $[9sec^{2}(\frac{x}{3})]$ $[\frac{1}{3}]$ $y'$ = $3sec^{2}(\frac{x}{3})$ $y''$ = $\frac{d}{dx}$$3sec^{2}(\frac{x}{3})$ $y''$ = $3(2)sec(\frac{x}{3})$ $\frac{d}{dx}$$[sec(\frac{x}{3})]$ $y''$ = $[6sec(\frac{x}{3})]$$[sec(\frac{x}{3})tan(\frac{x}{3})]$ $\frac{d}{dx}$$(\frac{x}{3})$ $y''$ = $[6sec^{2}(\frac{x}{3})tan(\frac{x}{3})]$$[\frac{1}{3}]$ $y''$ = $2sec^{2}(\frac{x}{3})tan(\frac{x}{3})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.