Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.6 - The Chain Rule - Exercises 3.6 - Page 149: 43

Answer

$\frac{dy}{dt}$ = $\frac{8sin(2t)}{(1+cos(2t))^{5}}$

Work Step by Step

$y$ = $(1+cos(2t))^{-4}$ $\frac{dy}{dt}$ = $\frac{d}{dt}$$(1+cos(2t))^{-4}$ $\frac{dy}{dt}$ = $(-4)(1+cos(2t))^{-5}$ $\frac{d}{dt}$$(1+cos(2t))$ $\frac{dy}{dt}$ = $(-4)(1+cos(2t))^{-5}$$(-sin(2t))$ $\frac{d}{dt}$$(2t)$ $\frac{dy}{dt}$ = $(-4)(1+cos(2t))^{-5}$$(-sin(2t))$ $(2)$ $\frac{dy}{dt}$ = $(8sin(2t))(1+cos(2t))^{-5}$ $\frac{dy}{dt}$ = $\frac{8sin(2t)}{(1+cos(2t))^{5}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.