Answer
$\frac{dy}{dt}$ = $\frac{8sin(2t)}{(1+cos(2t))^{5}}$
Work Step by Step
$y$ = $(1+cos(2t))^{-4}$
$\frac{dy}{dt}$ = $\frac{d}{dt}$$(1+cos(2t))^{-4}$
$\frac{dy}{dt}$ = $(-4)(1+cos(2t))^{-5}$ $\frac{d}{dt}$$(1+cos(2t))$
$\frac{dy}{dt}$ = $(-4)(1+cos(2t))^{-5}$$(-sin(2t))$ $\frac{d}{dt}$$(2t)$
$\frac{dy}{dt}$ = $(-4)(1+cos(2t))^{-5}$$(-sin(2t))$ $(2)$
$\frac{dy}{dt}$ = $(8sin(2t))(1+cos(2t))^{-5}$
$\frac{dy}{dt}$ = $\frac{8sin(2t)}{(1+cos(2t))^{5}}$