Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.6 - The Chain Rule - Exercises 3.6 - Page 149: 63

Answer

$y''$ = $16$$(2x+1)^{2}$$(5x+1)$

Work Step by Step

$y$ = $x(2x+1)^{4}$ $y'$ = $\frac{d}{dx}$$[x(2x+1)^{4}]$ $y'$ = $(x)$$\frac{d}{dx}$$(2x+1)^{4}$+$(2x+1)^{4}$$\frac{d}{dx}$$(x)$ $y'$ = $(x)$$(4)(2x+1)^{3}$$\frac{d}{dx}$$(2x+1)$+$(2x+1)^{4}$$(1)$ $y'$ = $(4x)$$(2x+1)^{3}$$(2)$+$(2x+1)^{4}$ $y'$ = $(8x)$$(2x+1)^{3}$+$(2x+1)^{4}$ $y'$ = $(2x+1)^{3}$($8x+2x+1$) $y'$ = $(2x+1)^{3}$($10x+1$) $y''$ = $\frac{d}{dx}$[$(2x+1)^{3}$($10x+1$)] $y''$ = $(2x+1)^{3}$$\frac{d}{dx}$($10x+1$)+($10x+1$)$\frac{d}{dx}$$(2x+1)^{3}$ $y''$ = $(2x+1)^{3}$($10$)+($10x+1$)$(3)(2x+1)^{2}$$\frac{d}{dx}$$(2x+1)$ $y''$ = $(2x+1)^{3}$($10$)+($10x+1$)$(3)(2x+1)^{2}$$(2)$ $y''$ = $(2x+1)^{2}$$(20x+10+60x+6)$ $y''$ = $(2x+1)^{2}$$(80x+16)$ $y''$ = $16$$(2x+1)^{2}$$(5x+1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.