Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.6 - The Chain Rule - Exercises 3.6 - Page 149: 46

Answer

$\frac{dy}{dt}$ = $\frac{(sin^{\frac{1}{3}}t)(4tcost-3sint)}{3t^{2}}$

Work Step by Step

$y$ = $(t^{-\frac{3}{4}}sint)^{\frac{4}{3}}$ $\frac{dy}{dt}$ = $\frac{4}{3}$$(t^{-\frac{3}{4}}sint)^{\frac{1}{3}}$ $\frac{d}{dt}$$(t^{-\frac{3}{4}}sint)$ $\frac{dy}{dt}$ = $\frac{4}{3}$$(t^{-\frac{3}{4}}sint)^{\frac{1}{3}}$ [$(t^{-\frac{3}{4}})$$\frac{d}{dt}$$(sint)$ + $(sint)$$\frac{d}{dt}$$(t^{-\frac{3}{4}})$] $\frac{dy}{dt}$ = $\frac{4}{3}$$(t^{-\frac{3}{4}}sint)^{\frac{1}{3}}$ [$(t^{-\frac{3}{4}})$$(cost)$ + $(sint)$$(-\frac{3}{4})$$(t^{-\frac{7}{4}})$] $\frac{dy}{dt}$ = $\frac{4}{3}$$(t^{-\frac{1}{4}}sin^{\frac{1}{3}}t)$ [$\frac{4tcost-3sint}{4t^{\frac{7}{4}}}$] $\frac{dy}{dt}$ = $\frac{(4sin^{\frac{1}{3}}t)}{3t^{\frac{1}{4}}}$ [$\frac{4tcost-3sint}{4t^{\frac{7}{4}}}$] $\frac{dy}{dt}$ = ($sin^{\frac{1}{3}}t$) [$\frac{4tcost-3sint}{3t^{2}}$] $\frac{dy}{dt}$ = $\frac{(sin^{\frac{1}{3}}t)(4tcost-3sint)}{3t^{2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.