Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.6 - The Chain Rule - Exercises 3.6 - Page 149: 61

Answer

$y''$ = $2csc^{2}(3x-1)cot(3x-1)$

Work Step by Step

$y$ = $\frac{1}{9}$$cot(3x-1)$ $y'$ = $\frac{d}{dx}$[$\frac{1}{9}$$cot(3x-1)$] $y'$ = $\frac{1}{9}$$(-csc^{2}(3x-1))$ $\frac{d}{dx}$$(3x-1)$ $y'$ = $\frac{1}{9}$$(-csc^{2}(3x-1))$$(3)$ $y'$ = $-\frac{1}{3}$$csc^{2}(3x-1)$ $y''$ = $\frac{d}{dx}$[$-\frac{1}{3}$$csc^{2}(3x-1)$] $y''$ = $-\frac{1}{3}$$2csc(3x-1)$ $\frac{d}{dx}$$(csc(3x-1))$ $y''$ = $[-\frac{2}{3}$$csc(3x-1)]$$[-csc(3x-1)cot(3x-1)]$ $\frac{d}{dx}$$(3x-1)$ $y''$ = $[-\frac{2}{3}$$csc(3x-1)]$$[-csc(3x-1)cot(3x-1)]$$(3)$ $y''$ = $2csc^{2}(3x-1)cot(3x-1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.