Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.6 - The Chain Rule - Exercises 3.6 - Page 149: 59

Answer

$y''$ = $(\frac{6}{x^{3}})(1+\frac{1}{x})$$(1+\frac{2}{x})$

Work Step by Step

$y$ = $(1+\frac{1}{x})^{3}$ $y'$ = $\frac{d}{dx}$$(1+\frac{1}{x})^{3}$ $y'$ = $3(1+\frac{1}{x})^{2}$ $\frac{d}{dx}$$(1+\frac{1}{x})$ $y'$ = $3(1+\frac{1}{x})^{2}$$(-\frac{1}{x^{2}})$ $y''$ = $\frac{d}{dx}$[$3(1+\frac{1}{x})^{2}$$(-\frac{1}{x^{2}})$] $y''$ = $3$[$(1+\frac{1}{x})^{2}$$\frac{d}{dx}$$(-\frac{1}{x^{2}})$ + $(-\frac{1}{x^{2}})$$\frac{d}{dx}$$(1+\frac{1}{x})^{2}$] $y''$ = $3$[$(1+\frac{1}{x})^{2}$$(\frac{2}{x^{3}})$ + $(-\frac{1}{x^{2}})$$2(1+\frac{1}{x})$$\frac{d}{dx}$$(1+\frac{1}{x})$] $y''$ = $3$[$(1+\frac{1}{x})^{2}$$(\frac{2}{x^{3}})$ + $(-\frac{1}{x^{2}})$$2(1+\frac{1}{x})$$(-\frac{1}{x^{2}})$] $y''$ = $3$[$(1+\frac{1}{x})^{2}$$(\frac{2}{x^{3}})$ + $(\frac{2}{x^{4}})$$(1+\frac{1}{x})$] $y''$ = $(\frac{6}{x^{3}})(1+\frac{1}{x})$[$(1+\frac{1}{x})$ + $(\frac{1}{x})$] $y''$ = $(\frac{6}{x^{3}})(1+\frac{1}{x})$$(1+\frac{2}{x})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.