Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.6 - The Chain Rule - Exercises 3.6 - Page 149: 53

Answer

$\frac{dy}{dt}$ = $\frac{-tsin(t^{2})}{\sqrt {(1+cos(t^{2})}}$

Work Step by Step

$y$ = $\sqrt {(1+cos(t^{2})}$ $\frac{dy}{dt}$ = $\frac{d}{dt}$$\sqrt {(1+cos(t^{2})}$ $\frac{dy}{dt}$ = $\frac{1}{2\sqrt {(1+cos(t^{2})}}$ $\frac{d}{dt}$$(1+cos(t^{2}))$ $\frac{dy}{dt}$ = $\frac{1}{2\sqrt {(1+cos(t^{2})}}$ $(-sin(t^{2}))$ $\frac{d}{dt}$$(t^{2})$ $\frac{dy}{dt}$ = $\frac{1}{2\sqrt {(1+cos(t^{2})}}$ $(-sin(t^{2}))$$(2t)$ $\frac{dy}{dt}$ = $\frac{-tsin(t^{2})}{\sqrt {(1+cos(t^{2})}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.