Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.6 - The Chain Rule - Exercises 3.6 - Page 149: 64

Answer

$y''$ = $2$$(x^{3}-1)^{3}$$(136x^{6}-47x^{3}+1)$

Work Step by Step

$y$ = $x^{2}$$(x^{3}-1)^{5}$ $y'$ = $\frac{d}{dx}$[$x^{2}$$(x^{3}-1)^{5}$] $y'$ = $(x^{2})$$\frac{d}{dx}$$(x^{3}-1)^{5}$+$(x^{3}-1)^{5}$$\frac{d}{dx}$$(x^{2})$ $y'$ = $(x^{2})$$(5)(x^{3}-1)^{4}$$\frac{d}{dx}$$(x^{3}-1)$+$(x^{3}-1)^{5}$$(2x)$ $y'$ = $(x^{2})$$(5)(x^{3}-1)^{4}$$(3x^{2})$+$(x^{3}-1)^{5}$$(2x)$ $y'$ = $(x^{3}-1)^{4}$[$15x^{4}+2x^{4}-2x$] $y'$ = $(x^{3}-1)^{4}$$(17x^{4}-2x)$ $y''$ = $\frac{d}{dx}$[$(x^{3}-1)^{4}$$(17x^{4}-2x)$] $y''$ = $(x^{3}-1)^{4}$$\frac{d}{dx}$$(17x^{4}-2x)$+$(17x^{4}-2x)$$\frac{d}{dx}$$(x^{3}-1)^{4}$ $y''$ = $(x^{3}-1)^{4}$$(68x^{3}-2)$+$(17x^{4}-2x)$$(4)(x^{3}-1)^{3}$$\frac{d}{dx}$$(x^{3}-1)$ $y''$ = $(x^{3}-1)^{4}$$(68x^{3}-2)$+$(17x^{4}-2x)$$(4)(x^{3}-1)^{3}$$(3x^{2})$ $y''$ = $(x^{3}-1)^{3}$[$(x^{3}-1)(68x^{3}-2)$+$(17x^{4}-2x)$$(12x^{2})$] $y''$ = $(x^{3}-1)^{3}$$(68x^{6}-70x^{3}+2+204x^{6}-24x^{3}$] $y''$ = $(x^{3}-1)^{3}$$(272x^{6}-94x^{3}+2)$ $y''$ = $2$$(x^{3}-1)^{3}$$(136x^{6}-47x^{3}+1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.