Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.6 - The Chain Rule - Exercises 3.6 - Page 149: 47

Answer

$\frac{dy}{dt}$ = $\frac{(-3t^{2})(t^{2}+4)}{(t^{2}-4)^{4}}$

Work Step by Step

$y$ = $(\frac{t^{2}}{t^{3}-4t})^{3}$ $\frac{dy}{dt}$ = $3(\frac{t^{2}}{t^{3}-4t})^{2}$ $\frac{d}{dt}$$(\frac{t^{2}}{t^{3}-4t})$ $\frac{dy}{dt}$ = $3(\frac{t^{2}}{t^{3}-4t})^{2}$ $\frac{(t^{3}-4t)\frac{d}{dt}(t^{2})-(t^{2})\frac{d}{dt}(t^{3}-4t)}{(t^{3}-4t)^{2}}$ $\frac{dy}{dt}$ = $3(\frac{t^{2}}{t^{3}-4t})^{2}$ $\frac{(t^{3}-4t)(2t)-(t^{2})(3t^{2}-4)}{(t^{3}-4t)^{2}}$ $\frac{dy}{dt}$ = $3(\frac{t^{2}}{t^{3}-4t})^{2}$ $\frac{(2t^{4}-8t^{2}-3t^{4}+4t^{2})}{(t^{3}-4t)^{2}}$ $\frac{dy}{dt}$ = $3(\frac{t^{2}}{t^{3}-4t})^{2}$ $\frac{(-t^{4}-4t^{2})}{(t^{3}-4t)^{2}}$ $\frac{dy}{dt}$ = $\frac{3t^{4}}{(t^{3}-4t)^{2}}$ $\frac{(-t^{2})(t^{2}+4)}{(t^{3}-4t)^{2}}$ $\frac{dy}{dt}$ = $\frac{(-3t^{6})(t^{2}+4)}{(t^{3}-4t)^{4}}$ $\frac{dy}{dt}$ = $\frac{(-3t^{6})(t^{2}+4)}{(t^{4})(t^{2}-4)^{4}}$ $\frac{dy}{dt}$ = $\frac{(-3t^{2})(t^{2}+4)}{(t^{2}-4)^{4}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.