Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.6 - The Chain Rule - Exercises 3.6 - Page 149: 56

Answer

$\frac{dy}{dt}$ = [$-24cos^{3}(sec^{2}3t)$][$(sin(sec^{2}3t))$][$sec^{2}(3t)tan(3t)$]

Work Step by Step

$y$ = $cos^{4}(sec^{2}3t)$ $\frac{dy}{dt}$ = $\frac{d}{dt}$$cos^{4}(sec^{2}3t)$ $\frac{dy}{dt}$ = $4cos^{3}(sec^{2}3t)$ $\frac{d}{dt}$$(cos(sec^{2}3t))$ $\frac{dy}{dt}$ = $4cos^{3}(sec^{2}3t)$$(-sin(sec^{2}3t))$ $\frac{d}{dt}$$(sec^{2}3t)$ $\frac{dy}{dt}$ = [$4cos^{3}(sec^{2}3t)$][$(-sin(sec^{2}3t))$][$2sec(3t)$] $\frac{d}{dt}$$(sec(3t))$ $\frac{dy}{dt}$ = [$4cos^{3}(sec^{2}3t)$][$(-sin(sec^{2}3t))$][$2sec(3t)$][$sec(3t)tan(3t)$] $\frac{d}{dt}$$(3t)$ $\frac{dy}{dt}$ = [$4cos^{3}(sec^{2}3t)$][$(-sin(sec^{2}3t))$][$2sec(3t)$][$sec(3t)tan(3t)$]$(3)$ $\frac{dy}{dt}$ = [$-24cos^{3}(sec^{2}3t)$][$(sin(sec^{2}3t))$][$sec^{2}(3t)tan(3t)$]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.