Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 238: 8

Answer

$$\eqalign{ & {\text{Maximum at: }}\left( {\frac{\pi }{4},1} \right){\text{ and }}\left( {\frac{{5\pi }}{4},1} \right) \cr & {\text{Minimum at: }}\left( {\frac{{3\pi }}{4}, - 1} \right){\text{ and }}\left( {\frac{{7\pi }}{4}, - 1} \right) \cr} $$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \sin 2x,{\text{ }}\left[ {0,2\pi } \right] \cr & {\text{Differentiate}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {\sin 2x} \right] \cr & f'\left( x \right) = 2\cos 2x \cr & {\text{Let }}f'\left( x \right) = 0 \cr & 2\cos 2x = 0 \cr & \cos 2x = 0 \cr & {\text{For the interval }}\left[ {0,2\pi } \right]{\text{ }}\cos 2x = 0{\text{ when:}} \cr & x = \frac{\pi }{4},\frac{{3\pi }}{4},\frac{{5\pi }}{4},\frac{{7\pi }}{4}{\text{ }}\left( {{\text{critical values}}} \right) \cr & {\text{Evaluate }}f\left( x \right) = \sin 2x,{\text{ at the endpoints and critical}}{\text{ values}} \cr & f\left( 0 \right) = \sin 2\left( 0 \right) = 0 \to \left( {0,0} \right) \cr & f\left( {\frac{\pi }{4}} \right) = \sin 2\left( {\frac{\pi }{4}} \right) = 1 \to \left( {\frac{\pi }{4},1} \right) \cr & f\left( {\frac{{3\pi }}{4}} \right) = \sin 2\left( {\frac{{3\pi }}{4}} \right) = - 1 \to \left( {\frac{{3\pi }}{4}, - 1} \right) \cr & f\left( {\frac{{5\pi }}{4}} \right) = \sin 2\left( {\frac{{5\pi }}{4}} \right) = 1 \to \left( {\frac{{5\pi }}{4},1} \right) \cr & f\left( {\frac{{7\pi }}{4}} \right) = \sin 2\left( {\frac{{7\pi }}{4}} \right) = - 1 \to \left( {\frac{{7\pi }}{4}, - 1} \right) \cr & f\left( {2\pi } \right) = \sin 2\left( {2\pi } \right) = 0 \to \left( {2\pi ,0} \right) \cr & {\text{Therefore}} \cr & {\text{Maximum at: }}\left( {\frac{\pi }{4},1} \right){\text{ and }}\left( {\frac{{5\pi }}{4},1} \right) \cr & {\text{Minimum at: }}\left( {\frac{{3\pi }}{4}, - 1} \right){\text{ and }}\left( {\frac{{7\pi }}{4}, - 1} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.