Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 238: 26

Answer

$$\eqalign{ & {\text{Increasing on: }}\left( {0,\frac{\pi }{4}} \right){\text{ and }}\left( {\frac{{5\pi }}{4},2\pi } \right) \cr & {\text{Decreasing on: }}\left( {\frac{\pi }{4},\frac{{5\pi }}{4}} \right) \cr} $$

Work Step by Step

\[\begin{align} & f\left( x \right)=\sin x+\cos x,\text{ }\left[ 0,2\pi \right] \\ & \text{Calculate the first derivative} \\ & f'\left( x \right)=\frac{d}{dx}\left[ \sin x+\cos x \right] \\ & f'\left( x \right)=\cos x-\sin x \\ & \text{Find the critical points, set the first derivative to }0 \\ & \cos x-\sin x=0 \\ & \cos x=\sin x \\ & \text{For the interval }\left[ 0,2\pi \right],\text{ }\cos x=\sin x\text{ when:} \\ & x=\frac{\pi }{4},\text{ }x=\frac{5\pi }{4} \\ & \text{Intervals: }\left( 0,\frac{\pi }{4} \right),\left( \frac{\pi }{4},\frac{5\pi }{4} \right),\left( \frac{5\pi }{4},2\pi \right) \\ & \text{Making a table of values }\left( \text{See examples on page 178 } \right) \\ \end{align}\] \[\boxed{\begin{array}{*{20}{c}} {{\text{Interval}}}&{\left( {0,\frac{\pi }{4}} \right)}&{\left( {\frac{\pi }{4},\frac{{5\pi }}{4}} \right)}&{\left( {\frac{{5\pi }}{4},2\pi } \right)} \\ {{\text{Test Value}}}&{x = \frac{\pi }{8}}&{x = \pi }&{x = \frac{{7\pi }}{4}} \\ {{\text{Sign of }}f'\left( x \right)}&{0.54 > 0}&{ - 1 < 0}&{\sqrt 2 > 0} \\ {{\text{Conclusion}}}&{{\text{Increasing}}}&{{\text{Decreasing}}}&{{\text{Increasing}}} \end{array}}\] $$\eqalign{ & {\text{By Theorem 3}}{\text{.5 }}f{\text{ is:}} \cr & {\text{Increasing on: }}\left( {0,\frac{\pi }{4}} \right){\text{ and }}\left( {\frac{{5\pi }}{4},2\pi } \right) \cr & {\text{Decreasing on: }}\left( {\frac{\pi }{4},\frac{{5\pi }}{4}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.