Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 238: 12

Answer

$$c{\text{ values: }} - \frac{{3\pi }}{4}, - \frac{\pi }{4},\frac{\pi }{4},\frac{{7\pi }}{4}$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \sin 2x,{\text{ }}\underbrace {\left[ { - \pi ,\pi } \right]}_{\left[ {a,b} \right]} \to a = - \pi ,b = \pi \cr & {\text{Evaluate }}f\left( x \right){\text{ at the endpoints}} \cr & f\left( { - \pi } \right) = \sin 2\left( { - \pi } \right) = 0 \cr & f\left( \pi \right) = \sin 2\left( \pi \right) = 0 \cr & f\left( { - \pi } \right) = f\left( \pi \right) = 0 \cr & f{\text{ is continuous on }}\left[ { - \pi ,\pi } \right],{\text{ and }}f{\text{ is differentiable on }} \cr & \left( { - \pi ,\pi } \right),{\text{ then Rolle's Theorem applies}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {\sin 2x} \right] \cr & f'\left( x \right) = 2\cos 2x \cr & 2\cos 2x = 0 \cr & \cos 2x = 0 \cr & {\text{For the interval }}\left[ { - \pi ,2\pi } \right]{\text{ }}\cos 2x = 0{\text{ when:}} \cr & x = - \frac{{3\pi }}{4}, - \frac{\pi }{4},\frac{\pi }{4},\frac{{7\pi }}{4} \cr & c{\text{ values: }} - \frac{{3\pi }}{4}, - \frac{\pi }{4},\frac{\pi }{4},\frac{{7\pi }}{4} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.