Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 238: 22

Answer

$${\text{Increasing on: }}\left( { - \infty ,\infty } \right)$$

Work Step by Step

$$\eqalign{ & h\left( x \right) = {\left( {x + 2} \right)^{1/3}} + 8 \cr & {\text{Calculate the first derivative}} \cr & h'\left( x \right) = \frac{d}{{dx}}\left[ {{{\left( {x + 2} \right)}^{1/3}} + 8} \right] \cr & h'\left( x \right) = \frac{1}{3}{\left( {x + 2} \right)^{ - 2/3}} \cr & {\text{Find the critical points, set the first derivative to }}0 \cr & h'\left( x \right) = \frac{1}{3}{\left( {x + 2} \right)^{ - 2/3}} \cr & \frac{1}{{3{{\left( {x + 2} \right)}^{2/3}}}} = 0 \cr & h'\left( x \right){\text{ is never 0, and }}h'\left( x \right){\text{is not defined at }}x = - 2 \cr & {\text{We have the critical point }}x = - 2 \cr & {\text{Set the intervals }}\left( { - \infty , - 2} \right){\text{ and }}\left( { - 2,\infty } \right) \cr & {\text{Making a table of values }}\left( {{\text{See examples on page 178 }}} \right) \cr} $$ \[\boxed{\begin{array}{*{20}{c}} {{\text{Interval}}}&{\left( { - \infty , - 2} \right)}&{\left( { - 2,\infty } \right)} \\ {{\text{Test Value}}}&{x = - 3}&{x = 6} \\ {{\text{Sign of }}h'\left( x \right)}&{h'\left( { - 3} \right) = \frac{1}{3} > 0}&{h'\left( 3 \right) = \frac{1}{{12}} > 0} \\ {{\text{Conclusion}}}&{{\text{Increasing}}}&{{\text{Increasing}}} \end{array}}\] $$\eqalign{ & {\text{By Theorem 3}}{\text{.5 }}h{\text{ is:}} \cr & {\text{Increasing on: }}\left( { - \infty ,\infty } \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.