Answer
$$\eqalign{
& \left( {\text{a}} \right){\text{ }}x = \frac{{3\pi }}{4}{\text{ and }}x = \frac{{7\pi }}{4} \cr
& \left( {\text{b}} \right){\text{Increasing: }}\left( {\frac{{3\pi }}{4},\frac{{7\pi }}{4}} \right),{\text{ Decreasing on }}\left( {0,\frac{{3\pi }}{4}} \right),\left( {\frac{{7\pi }}{4},2\pi } \right) \cr
& \left( {\text{c}} \right){\text{Relative maximum at }}\left( {\frac{{7\pi }}{4},\sqrt 2 } \right) \cr
& {\text{Relative minumum at }}\left( {\frac{{3\pi }}{4}, - \sqrt 2 } \right) \cr} $$
Work Step by Step
$$\eqalign{
& f\left( x \right) = \cos x - \sin x,{\text{ }}\left( {0,2\pi } \right) \cr
& \cr
& \left( {\text{a}} \right){\text{Calculating the first derivative}} \cr
& f'\left( x \right) = \frac{d}{{dx}}\left[ {\cos x - \sin x} \right] \cr
& f'\left( x \right) = - \sin x - \cos x \cr
& {\text{Calculating the critical points, set }}f'\left( x \right) = 0 \cr
& f'\left( x \right) = 0 \cr
& - \sin x - \cos x = 0 \cr
& - \sin x = \cos x \cr
& - \frac{{\sin x}}{{\cos x}} = 1 \cr
& \tan x = - 1 \cr
& {\text{On the interval }}\left( {0,2\pi } \right){\text{ }}\tan x = - 1{\text{ for }}x = \frac{{3\pi }}{4},\frac{{7\pi }}{4} \cr
& \cr
& \left( {\text{b}} \right){\text{Set the intervals }}\left( {0,\frac{{3\pi }}{4}} \right),\left( {\frac{{3\pi }}{4},\frac{{7\pi }}{4}} \right),\left( {\frac{{7\pi }}{4},2\pi } \right) \cr
& {\text{Making a table of values }}\left( {{\text{See examples on page 180 }}} \right) \cr} $$
\[\boxed{\begin{array}{*{20}{c}}
{{\text{Interval}}}&{{\text{Test Value}}}&{{\text{Sign of }}f'\left( x \right)}&{{\text{Conclusion}}} \\
{\left( {0,\frac{{3\pi }}{4}} \right)}&{x = \frac{\pi }{2}}&{ - 1 < 0}&{{\text{Decreasing}}} \\
{\left( {\frac{{3\pi }}{4},\frac{{7\pi }}{4}} \right)}&{x = \pi }&{1 > 0}&{{\text{Increasing}}} \\
{\left( {\frac{{7\pi }}{4},2\pi } \right)}&{x = \frac{{11\pi }}{6}}&{ \approx - 0.366 < 0}&{{\text{Decreasing}}}
\end{array}}\]
$$\eqalign{
& \left( {\text{c}} \right){\text{ By Theorem 3}}{\text{.6}} \cr
& *f'\left( x \right){\text{changes from negative to positive at }}x = \frac{{3\pi }}{4},{\text{so }}f\left( x \right) \cr
& {\text{has a relative minimum at }}\left( {\frac{{3\pi }}{4},f\left( {\frac{{3\pi }}{4}} \right)} \right) \cr
& f\left( {\frac{{3\pi }}{4}} \right) = \cos \left( {\frac{{3\pi }}{4}} \right) - \sin \left( {\frac{{3\pi }}{4}} \right) = - \sqrt 2 \cr
& {\text{Relative minumum at }}\left( {\frac{{3\pi }}{4}, - \sqrt 2 } \right) \cr
& *f'\left( x \right){\text{changes from positive to negative at }}x = \frac{{7\pi }}{4},{\text{so }}f\left( x \right) \cr
& {\text{has a relative maximum at }}\left( {\frac{{7\pi }}{4},f\left( {\frac{{7\pi }}{4}} \right)} \right) \cr
& f\left( {\frac{{7\pi }}{4}} \right) = \cos \left( {\frac{{7\pi }}{4}} \right) - \sin \left( {\frac{{7\pi }}{4}} \right) = \sqrt 2 \cr
& {\text{Relative maximum at }}\left( {\frac{{7\pi }}{4},\sqrt 2 } \right) \cr
& \cr
& \left( {\text{d}} \right){\text{Graph}} \cr} $$