Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 238: 4

Answer

Absolute maximum: $(9/4,9/4)$ Absolute minimum: $(0,0)$ and $(9,0)$

Work Step by Step

$ h(x)=3x^{1/2}-x \quad$ ... defined on $[0,9]$ $ h^{\prime}(x)=\displaystyle \frac{3}{2}x^{-1/2}-1\quad$ ... defined on $(0,9)$, $h^{\prime}(x)=0 \quad$ for $\displaystyle \frac{3}{2}x^{-1/2}-1=0$ $\displaystyle \frac{3}{2}x^{-1/2}=1$ $x^{-1/2}=\displaystyle \frac{2}{3}$ $x=(\displaystyle \frac{2}{3})^{-2}$ $ x=\displaystyle \frac{9}{4}\in(0,9)\quad$ ...critical number $\left[\begin{array}{llllll} x, \text{ interval} & 0 & (0,9/4) & 9/4 & (9/4,9) & 9\\ t=\text{ test number} & & 1 & & 4 & \\ h^{\prime}(t) & & +2 & & -1/4 & \\ h(x) & 0 & \nearrow & 9/4 & \searrow & 0\\ & min & & max & & min \end{array}\right]$ Absolute maximum: $(9/4,9/4)$ Absolute minimum: $(0,0)$ and $(9,0)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.