Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 238: 5

Answer

Absolute maximum: $(3,2/3)$ Absolute minimum: $(-3,-2/3)$

Work Step by Step

$ f(x)=\displaystyle \frac{4x}{x^{2}+9} \quad$ ... defined on $[-4,4].$ $ f^{\prime}(x)=\displaystyle \frac{4(x^{2}+9)-4x(2x)}{(x^{2}+9)^{2}}\quad$ ... quotient rule $=\displaystyle \frac{-4x^{2}+36}{(x^{2}+9)^{2}}\quad$ ... defined on $(-4,4).$ $f^{\prime}(x)=0 \quad$ for $-4x^{2}+36=0$ $x^{2}-9=0$ $(x+3)(x-3)=0$ $x=\pm 3\in(-4,4)\quad $(critical numbers) $\left[\begin{array}{lccccccc} x, \text{ interval} & -4 & (-4,-3) & -3 & (-3,3) & 3 & (3,4) & 4\\ t=\text{ test number} & & -3.5 & & 0 & & 3.5 & \\ \text{ sign of }f^{\prime}(t) & & - & & + & & - & \\ f(x) & -16/25 & \searrow & -2/3 & \nearrow & 2/3 & \searrow & 16/25 \\ & & & min & & max & & \end{array}\right]$ Absolute maximum: $(3,2/3)$ Absolute minimum: $(-3,-2/3)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.