Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 238: 28

Answer

$$\eqalign{ & \left( {\text{a}} \right)x = - \frac{{\sqrt {15} }}{6},{\text{ }}x = \frac{{\sqrt {15} }}{6} \cr & \left( {\text{b}} \right){\text{Decreasing on: }}\left( { - \frac{{\sqrt {15} }}{6},\frac{{\sqrt {15} }}{6}} \right) \cr & {\text{Increasing on: }}\left( { - \infty , - \frac{{\sqrt {15} }}{6}} \right),\left( {\frac{{\sqrt {15} }}{6},\infty } \right) \cr & \left( {\text{c}} \right){\text{: Relative maximum at }}\left( { - \frac{{\sqrt {15} }}{6},\frac{{5\sqrt {15} }}{9}} \right) \cr & \left( {\text{c}} \right){\text{: Relative minimum at }}\left( {\frac{{\sqrt {15} }}{6}, - \frac{{5\sqrt {15} }}{9}} \right) \cr} $$

Work Step by Step

$$\eqalign{ & f\left( x \right) = 4{x^3} - 5x \cr & \left( {\text{a}} \right){\text{Calculating the first derivative}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {4{x^3} - 5x} \right] \cr & f'\left( x \right) = 12{x^2} - 5 \cr & {\text{Calculating the critical points, set }}f'\left( x \right) = 0 \cr & f'\left( x \right) = 0 \cr & 12{x^2} - 5 = 0 \cr & {x^2} = \frac{5}{{12}} \cr & x = - \frac{{\sqrt {15} }}{6},{\text{ }}x = \frac{{\sqrt {15} }}{6} \cr & \cr & \left( {\text{b}} \right){\text{Set the intervals }}\left( { - \infty , - \frac{{\sqrt {15} }}{6}} \right),\left( { - \frac{{\sqrt {15} }}{6},\frac{{\sqrt {15} }}{6}} \right),\left( {\frac{{\sqrt {15} }}{6},\infty } \right) \cr & {\text{Making a table of values }}\left( {{\text{See examples on page 180 }}} \right) \cr} $$ \[\boxed{\begin{array}{*{20}{c}} {{\text{Interval}}}&{{\text{Test Value}}}&{{\text{Sign of }}f'\left( x \right)}&{{\text{Conclusion}}} \\ {\left( { - \infty , - \frac{{\sqrt {15} }}{6}} \right)}&{x = - 1}&{7 > 0}&{{\text{Increasing}}} \\ {\left( { - \frac{{\sqrt {15} }}{6},\frac{{\sqrt {15} }}{6}} \right)}&{x = 0}&{ - 5 < 0}&{{\text{Decreasing}}} \\ {\left( {\frac{{\sqrt {15} }}{6},\infty } \right)}&{x = 1}&{7 > 0}&{{\text{Increasing}}} \end{array}}\] $$\eqalign{ & \left( {\text{c}} \right){\text{ By Theorem 3}}{\text{.6}} \cr & *f'\left( x \right){\text{changes from positive to negative at }}x = - \frac{{\sqrt {15} }}{6},{\text{ so }}f\left( x \right) \cr & {\text{has a relative maximum at }}\left( { - \frac{{\sqrt {15} }}{6},f\left( { - \frac{{\sqrt {15} }}{6}} \right)} \right) \cr & f\left( { - \frac{{\sqrt {15} }}{6}} \right) = 4{\left( { - \frac{{\sqrt {15} }}{6}} \right)^3} - 5\left( { - \frac{{\sqrt {15} }}{6}} \right) = \frac{{5\sqrt {15} }}{9} \cr & *f'\left( x \right){\text{changes from negative to positive at }}x = \frac{{\sqrt {15} }}{6},{\text{ so }}f\left( x \right) \cr & {\text{has a relative minimum at }}\left( {\frac{{\sqrt {15} }}{6},f\left( {\frac{{\sqrt {15} }}{6}} \right)} \right) \cr & f\left( {\frac{{\sqrt {15} }}{6}} \right) = 4{\left( {\frac{{\sqrt {15} }}{6}} \right)^3} - 5\left( {\frac{{\sqrt {15} }}{6}} \right) = - \frac{{5\sqrt {15} }}{9} \cr & \cr & \left( {\text{d}} \right){\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.