Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 238: 27

Answer

$$\eqalign{ & \left( {\text{a}} \right)x = 3 \cr & \left( {\text{b}} \right){\text{Decreasing: }}\left( { - \infty ,3} \right),{\text{ Increasing: }}\left( {3,\infty } \right) \cr & \left( {\text{c}} \right){\text{Relative minimum at }}\left( {0, - 4} \right) \cr} $$

Work Step by Step

$$\eqalign{ & f\left( x \right) = {x^2} - 6x + 5 \cr & \left( {\text{a}} \right){\text{Calculating the first derivative}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{x^2} - 6x + 5} \right] \cr & f'\left( x \right) = 2x - 6 \cr & {\text{Calculating the critical points, set }}f'\left( x \right) = 0 \cr & f'\left( x \right) = 0 \cr & 2x - 6 = 0 \cr & x = 3 \cr & \cr & \left( {\text{b}} \right){\text{Set the intervals }}\left( { - \infty ,3} \right),\left( {3,\infty } \right) \cr & {\text{Making a table of values }}\left( {{\text{See examples on page 180 }}} \right) \cr} $$ \[\begin{array}{*{20}{c}} {{\text{Interval}}}&{\left( { - \infty ,3} \right)}&{\left( {3,\infty } \right)} \\ {{\text{Test Value}}}&{x = - 5}&{x = 4} \\ {{\text{Sign of }}f'\left( x \right)}&{{\text{ }}f'\left( { - 5} \right) = - 16 < 0}&{{\text{ }}f'\left( 4 \right) = 2 > 0} \\ {{\text{Conclusion}}}&{{\text{Decreasing}}}&{{\text{Increasing}}} \end{array}\] $$\eqalign{ & \left( {\text{c}} \right){\text{ By Theorem 3}}{\text{.6}} \cr & f'\left( x \right){\text{ changes from negative to positive at }}x = 3,{\text{ so }}f\left( x \right) \cr & {\text{has a relative minimum at }}\left( {3,f\left( 3 \right)} \right) \cr & f\left( 3 \right) = {\left( 3 \right)^2} - 6\left( 3 \right) + 5 \cr & f\left( 3 \right) = - 4 \cr & {\text{Relative minimum at }}\left( {3, - 4} \right) \cr & \cr & \left( {\text{d}} \right){\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.