Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 238: 7

Answer

Absolute maximum: $(2\pi,17.57)$ Absolute minimum: $(2.73,0.88)$

Work Step by Step

$ f(x)=2x+5\cos x \quad$ ... defined on $[0,2\pi].$ $ f^{\prime}(x)=2-5\sin x\quad$ ... defined on $(0,2\pi).$ $f^{\prime}(x)=0 \quad$ for $2-5\sin x=0$ $\displaystyle \sin x=\frac{2}{5}$ $x=\displaystyle \sin^{-1}(\frac{2}{5})$ $x\approx 0.41,2.73\in(0,2\pi)\quad $(critical numbers) $\left[\begin{array}{lccccccc} x, \text{ interval} & 0 & (0,0.41) & 0.41 & (0.41,2.73) & 2.73 & (2.73,2\pi) & 2\pi\\ t=\text{ test number} & & 0.1 & & \pi/2 & & 3\pi/2 & \\ \text{ sign of }f^{\prime}(t) & & + & & - & & + & \\ f(x) & 5 & \nearrow & 5.41 & \searrow & 0.88 & \nearrow & 17.57 \\ & & & & & min & & max \end{array}\right]$ Absolute maximum: $(2\pi,17.57)$ Absolute minimum: $(2.73,0.88)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.