Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 238: 6

Answer

Absolute maximum: $(2,\displaystyle \frac{2\sqrt{5}}{5})$ Absolute minimum: $(0,0)$

Work Step by Step

$ f(x)=\displaystyle \frac{x}{\sqrt{x^{2}+1}}=x(x^{2}+1)^{-1/2} \quad$ ... defined on $[0,2].$ $ f^{\prime}(x)=1\displaystyle \cdot(x^{2}+1)^{-1/2}+x[-\frac{1}{2}(x^{2}+1)^{-3/2}\cdot 2x]\quad$ ... product rule, chain rule $=\displaystyle \frac{1}{\sqrt{x^{2}+1}}-\frac{x^{2}}{(x^{2}+1)\sqrt{x^{2}+1}}$ $=\displaystyle \frac{(x^{2}+1)}{\sqrt{x^{2}+1}}-\frac{x^{2}}{(x^{2}+1)\sqrt{x^{2}+1}}$ $=\displaystyle \frac{1}{(x^{2}+1)\sqrt{x^{2}+1}}\quad$ ... defined on $(0,2).$ $f^{\prime}(x)=0 \quad$ for no x$\in(0,2)$ ( no critical numbers) $\left[\begin{array}{lcccc} x, \text{ interval} & 0 & (0,4) & 2\\ t=\text{ test number} & & 1 & \\ \text{ sign of }f^{\prime}(t) & & + & \\ f(x) & 0 & \nearrow & 2/\sqrt{5}\\ & min & & max \end{array}\right]$ $\displaystyle \frac{2}{\sqrt{5}}\cdot\frac{\sqrt{5}}{\sqrt{5}}=\frac{2\sqrt{5}}{5}$ Absolute maximum: $(2,\displaystyle \frac{2\sqrt{5}}{5})$ Absolute minimum: $(0,0)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.