Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 238: 13

Answer

$$c \approx 3.7640$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = {x^{2/3}},{\text{ }}\underbrace {\left[ {1,8} \right]}_{\left[ {a,b} \right]} \to a = 1,b = 8 \cr & {\text{Differentiate}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{x^{2/3}}} \right] \cr & f'\left( x \right) = \frac{2}{3}{x^{ - 1/3}} \cr & {\text{Thus:}} \cr & f'\left( c \right) = \frac{{f\left( b \right) - f\left( a \right)}}{{b - a}} \cr & \frac{2}{3}{c^{ - 1/3}} = \frac{{f\left( 8 \right) - f\left( 1 \right)}}{{8 - 1}} \cr & \frac{2}{{3\root 3 \of c }} = \frac{{{{\left( 8 \right)}^{2/3}} - {{\left( 1 \right)}^{2/3}}}}{7} \cr & {\text{Simplify and solve for }}c \cr & \frac{2}{{3\root 3 \of c }} = \frac{3}{7} \cr & \root 3 \of c = \frac{{14}}{9} \cr & c = {\left( {\frac{{14}}{9}} \right)^3} \cr & c \approx 3.7640 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.