Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 238: 44

Answer

$${\text{Relative maximum at }}\left( {3, - 5} \right)$$

Work Step by Step

$$\eqalign{ & h\left( t \right) = t - 4\sqrt {t + 1} \cr & {\text{Domain: }}\left[ { - 1,\infty } \right) \cr & {\text{*Calculate the first derivative}} \cr & h'\left( t \right) = \frac{d}{{dt}}\left[ {t - 4\sqrt {t + 1} } \right] \cr & h'\left( t \right) = 1 - 4\left( {\frac{1}{{2\sqrt {t + 1} }}} \right) \cr & h'\left( t \right) = 1 - 4\left( {\frac{1}{{2\sqrt {t + 1} }}} \right) \cr & h'\left( t \right) = 1 - \frac{2}{{\sqrt {t + 1} }} \cr & {\text{Set }}h'\left( t \right) = 0 \cr & 1 - \frac{2}{{\sqrt {t + 1} }} = 0 \cr & \frac{2}{{\sqrt {t + 1} }} = 1 \cr & \sqrt {t + 1} = 2 \cr & t + 1 = 4 \cr & t = 3 \cr & *{\text{Calculate the second derivative}} \cr & h''\left( t \right) = \frac{d}{{dt}}\left( {1 - 2{{\left( {t + 1} \right)}^{1/2}}} \right) \cr & h''\left( t \right) = - {\left( {t + 1} \right)^{ - 3/2}} \cr & {\text{Evaluate the second derivative at }}t = 3 \cr & h''\left( 3 \right) = - {\left( {3 + 1} \right)^{ - 3/2}} \cr & h''\left( 3 \right) = - \frac{1}{8} < 0 \cr & {\text{Then by the second derivative test }}\left( {{\text{Theorem 3}}{\text{.9}}} \right) \cr & h\left( t \right){\text{ has a relative maximum at }}\left( {0,h\left( 3 \right)} \right) \cr & h\left( 3 \right) = 3 - 4\sqrt {3 + 1} = - 5 \cr & {\text{Relative maximum at }}\left( {3, - 5} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.