Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 238: 21

Answer

$$\eqalign{ & {\text{Increasing on: }}\left( { - \infty , - \frac{3}{2}} \right) \cr & {\text{Decreasing on: }}\left( { - \frac{3}{2},\infty } \right) \cr} $$

Work Step by Step

$$\eqalign{ & f\left( x \right) = {x^2} + 3x - 12 \cr & {\text{Calculate the first derivative}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{x^2} + 3x - 12} \right] \cr & f'\left( x \right) = 2x + 3 \cr & {\text{Find the critical points, set the first derivative to }}0 \cr & f'\left( x \right) = 0 \cr & 2x + 3 = 0 \cr & 2x = - 3 \cr & x = - \frac{3}{2} \cr & {\text{Set the intervals }}\left( { - \infty , - \frac{3}{2}} \right){\text{ and }}\left( { - \frac{3}{2},\infty } \right) \cr & {\text{Making a table of values }}\left( {{\text{See examples on page 178 }}} \right) \cr} $$ \[\boxed{\begin{array}{*{20}{c}} {{\text{Interval}}}&{\left( { - \infty , - \frac{3}{2}} \right)}&{\left( { - \frac{3}{2},\infty } \right)} \\ {{\text{Test Value}}}&{x = - 5}&{x = 0} \\ {{\text{Sign of }}f'\left( x \right)}&{f'\left( { - 5} \right) = - 7 < 0}&{f'\left( 0 \right) = 3 > 0} \\ {{\text{Conclusion}}}&{{\text{Decreasing}}}&{{\text{Increasing}}} \end{array}}\] $$\eqalign{ & {\text{By Theorem 3}}{\text{.5 }}f{\text{ is:}} \cr & {\text{Increasing on: }}\left( { - \infty , - \frac{3}{2}} \right) \cr & {\text{Decreasing on: }}\left( { - \frac{3}{2},\infty } \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.