Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 238: 40

Answer

$$\eqalign{ & {\text{Inflection point }}\left( {0,0} \right) \cr & {\text{Concave upward}}:{\text{ }}\left( {0,2\pi } \right) \cr} $$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \tan \left( {\frac{x}{4}} \right),{\text{ }}\left( {0,2\pi } \right) \cr & {\text{Calculate the second derivative}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {\tan \left( {\frac{x}{4}} \right)} \right] \cr & f'\left( x \right) = \frac{1}{4}{\sec ^2}\left( {\frac{x}{4}} \right) \cr & f''\left( x \right) = \frac{d}{{dx}}\left[ {\frac{1}{4}{{\sec }^2}\left( {\frac{x}{4}} \right)} \right] \cr & f''\left( x \right) = \frac{2}{4}\sec \left( {\frac{x}{4}} \right)\left[ {\sec \left( {\frac{x}{4}} \right)\tan \left( {\frac{x}{4}} \right)} \right]\left( {\frac{1}{4}} \right) \cr & f''\left( x \right) = \frac{1}{8}{\sec ^2}\left( {\frac{x}{4}} \right)\tan \left( {\frac{x}{4}} \right) \cr & \frac{1}{8}{\sec ^2}\left( {\frac{x}{4}} \right)\tan \left( {\frac{x}{4}} \right) = 0 \cr & {\sec ^2}\left( {\frac{x}{4}} \right)\tan \left( {\frac{x}{4}} \right) = 0 \cr & {\text{On the interval }}\left( {0,2\pi } \right){\text{ }}{\sec ^2}\left( {\frac{x}{4}} \right)\tan \left( {\frac{x}{4}} \right) = - 1{\text{ for }}x = 0 \cr & {\text{We only have the interval }}\left( {0,2\pi } \right) \cr & {\text{Making a table of values }}\left( {{\text{See examples on page 188 }}} \right) \cr} $$ \[\boxed{\begin{array}{*{20}{c}} {{\text{Interval}}}&{\left( {0,2\pi } \right)} \\ {{\text{Test Value}}}&{x = \frac{\pi }{4}} \\ {{\text{Sign of }}f''\left( x \right)}&{ > 0} \\ {{\text{Conclusion}}}&{{\text{Concave upward}}} \end{array}}\] $$\eqalign{ & {\text{The inflection point occurs at }}x = 0 \cr & f\left( 0 \right) = \tan \left( {\frac{0}{4}} \right) = 0 \cr & f\left( 0 \right) = 0 \cr & {\text{Inflection point }}\left( {0,0} \right) \cr & {\text{Concave upward}}:{\text{ }}\left( {0,2\pi } \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.