Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 238: 24

Answer

$${\text{Increasing on: }}\left( { - \infty ,\infty } \right)$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = {\left( {x + 1} \right)^3} \cr & {\text{Calculate the first derivative}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{{\left( {x + 1} \right)}^3}} \right] \cr & f'\left( x \right) = 3{\left( {x + 1} \right)^2} \cr & {\text{Find the critical points, set the first derivative to }}0 \cr & f'\left( x \right) = 3{\left( {x + 1} \right)^2} \cr & 3{\left( {x + 1} \right)^2} = 0 \cr & {\text{We have the critical point }}x = - 1 \cr & {\text{Set the intervals }}\left( { - \infty , - 1} \right){\text{ and }}\left( { - 1,\infty } \right) \cr & {\text{Making a table of values }}\left( {{\text{See examples on page 178 }}} \right) \cr} $$ \[\boxed{\begin{array}{*{20}{c}} {{\text{Interval}}}&{\left( { - \infty , - 1} \right)}&{\left( { - 1,\infty } \right)} \\ {{\text{Test Value}}}&{x = - 2}&{x = 2} \\ {{\text{Sign of }}f'\left( x \right)}&{f'\left( { - 3} \right) = 3 > 0}&{f'\left( 3 \right) = 27 > 0} \\ {{\text{Conclusion}}}&{{\text{Increasing}}}&{{\text{Increasing}}} \end{array}}\] $$\eqalign{ & {\text{By Theorem 3}}{\text{.5 }}h{\text{ is:}} \cr & {\text{Increasing on: }}\left( { - \infty ,\infty } \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.