Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 238: 1

Answer

Absolute maximum: $(0,0)$ Absolute minimum: $(-5/2,-25/4)$

Work Step by Step

$ f(x)=x^{2}+5x \quad$ ... defined everywhere $ f^{\prime}(x)=2x+5\quad$ ... defined everywhere. $f^{\prime}(x)=0 \quad$ for $x=-5/2\in[-4,0]\quad $(critical number) $\left[\begin{array}{lccccc} x, \text{ interval} & -4 & (-4,-5/2) & -5/2 & (-5/2,0) & 0\\ t=\text{ test number} & & -3 & & -1 & \\ f^{\prime}(t) & & -1 & & +3 & \\ f(x) & -4 & \searrow & -25/4 & \nearrow & 0\\ & & & min & & max \end{array}\right]$ Absolute maximum: $(0,0)$ Absolute minimum: $(-5/2,-25/4)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.