Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 238: 25

Answer

$$\eqalign{ & {\text{Increasing on: }}\left( {1,\infty } \right) \cr & {\text{Decreasing on: }}\left( {0,1} \right) \cr} $$

Work Step by Step

$$\eqalign{ & h\left( x \right) = \sqrt x \left( {x - 3} \right),{\text{ }}x > 0 \cr & h\left( x \right) = {x^{3/2}} - 3{x^{1/2}} \cr & {\text{Calculate the first derivative}} \cr & h'\left( x \right) = \frac{d}{{dx}}\left[ {{x^{3/2}} - 3{x^{1/2}}} \right] \cr & h'\left( x \right) = \frac{3}{2}{x^{1/2}} - 3\left( {\frac{1}{2}{x^{ - 1/2}}} \right) \cr & h'\left( x \right) = \frac{3}{2}{x^{1/2}} - \frac{3}{2}{x^{ - 1/2}} \cr & {\text{Find the critical points, set the first derivative to }}0 \cr & h'\left( x \right) = \frac{3}{2}{x^{1/2}} - \frac{3}{2}{x^{ - 1/2}} \cr & \frac{3}{2}{x^{1/2}} - \frac{3}{2}{x^{ - 1/2}} = 0 \cr & \frac{3}{2}{x^{ - 1/2}}\left( {x - 1} \right) = 0 \cr & {\text{We have the critical point }}x = 1 \cr & {\text{Set the intervals }}\left( {0,1} \right){\text{ and }}\left( {1,\infty } \right) \cr & {\text{Making a table of values }}\left( {{\text{See examples on page 178 }}} \right) \cr} $$ \[\boxed{\begin{array}{*{20}{c}} {{\text{Interval}}}&{\left( {0,1} \right)}&{\left( {1,\infty } \right)} \\ {{\text{Test Value}}}&{x = 0.5}&{x = 2} \\ {{\text{Sign of }}h'\left( x \right)}&{h'\left( {0.5} \right) < 0}&{h'\left( 2 \right) > 0} \\ {{\text{Conclusion}}}&{{\text{Decreasing}}}&{{\text{Increasing}}} \end{array}}\] $$\eqalign{ & {\text{By Theorem 3}}{\text{.5 }}h{\text{ is:}} \cr & {\text{Increasing on: }}\left( {1,\infty } \right) \cr & {\text{Decreasing on: }}\left( {0,1} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.