Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 238: 2

Answer

Absolute maximum: $(-4,32)$ Absolute minimum: $(-6,0)$ and $(0,0)$

Work Step by Step

$ f(x)=x^{3}+6x^{2} \quad$ ... defined everywhere $ f^{\prime}(x)=3x^{2}+12x\quad$ ... defined everywhere. $f^{\prime}(x)=0 \quad$ for $3x^{2}+12x=0$ $3x(x+4)=0$ $x=-4,0\in[-6,1]\quad $(critical numbers) $\left[\begin{array}{lccccccc} x, \text{ intervals} & -6 & (-6,-4) & -4 & (-4,0) & 0 & (0,1) & 1\\ t=\text{ test number} & & -5 & & -1 & & 1/2 & \\ f^{\prime}(t) & & +75+60 & & -3-12 & & \frac{3}{4}+6 & \\ f(x) & 0 & \nearrow & +32 & \searrow & 0 & \nearrow & 7\\ & min & & max & & min & & \end{array}\right]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.