Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 507: 11

Answer

$$\frac{1}{8}x - \frac{1}{{32}}\sin 4x + C$$

Work Step by Step

$$\eqalign{ & \int {{{\sin }^2}x{{\cos }^2}x} dx \cr & = \frac{1}{4}\int {4{{\sin }^2}x{{\cos }^2}x} dx \cr & {\text{Use }}{\left( {ab} \right)^n} = {a^n}{b^n} \cr & = \frac{1}{4}\int {{{\left( {2\sin x\cos x} \right)}^2}} dx \cr & {\text{By the trigonometric identity }}\sin 2x = 2\sin x\cos x \cr & = \frac{1}{4}\int {{{\left( {\sin 2x} \right)}^2}} dx \cr & {\text{Use }}{\sin ^2}\theta = \frac{1}{2} - \frac{1}{2}\cos 2\theta \cr & = \frac{1}{4}\int {\left( {\frac{1}{2} - \frac{1}{2}\cos 4x} \right)} dx \cr & = \frac{1}{8}\int {dx} - \frac{1}{8}\int {\cos 4x} dx \cr & {\text{Integrating}} \cr & = \frac{1}{8}x - \frac{1}{{32}}\sin 4x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.