Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 507: 62

Answer

$$V = \frac{{{\pi ^2}}}{2}$$

Work Step by Step

$$\eqalign{ & {\text{Let }}f\left( x \right) = \sin x{\text{ and }}g\left( x \right) = 0 \cr & {\text{The volume is given by}} \cr & V = \pi \int_a^b {\left( {f{{\left( x \right)}^2} - g{{\left( x \right)}^2}} \right)dx} \cr & V = \pi \int_0^{\pi /4} {\left( {{{\sin }^2}x - 0} \right)dx} \cr & V = \pi \int_0^\pi {{{\sin }^2}x} dx \cr & {\text{Use the identity }}{\sin ^2}x = \frac{1}{2}\left( {1 - \cos 2x} \right) \cr & V = \frac{\pi }{2}\int_0^\pi {\left( {1 - \cos 2x} \right)} dx \cr & {\text{Integrating}} \cr & V = \frac{\pi }{2}\left[ {x - \frac{1}{2}\sin 2x} \right]_0^\pi \cr & V = \frac{\pi }{2}\left[ {\pi - \frac{1}{2}\sin 2\pi } \right] - \frac{\pi }{2}\left[ {0 - \frac{1}{2}\sin 0} \right] \cr & V = \frac{{{\pi ^2}}}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.