Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 507: 52

Answer

$$\eqalign{ & \int {{{\csc }^4}x} dx \cr & {\text{Write the integrand as}} \cr & = \int {{{\csc }^2}x{{\csc }^2}x} dx \cr & {\text{Use the trigonometric identity }}{\cot ^2}\theta + 1 = {\csc ^2}\theta \cr & = \int {\left( {{{\cot }^2}x + 1} \right){{\csc }^2}x} dx \cr & {\text{Multiply}} \cr & = \int {\left( {{{\cot }^2}x{{\csc }^2}x + {{\csc }^2}x} \right)} dx \cr & = \int {{{\cot }^2}x{{\csc }^2}x} dx + \int {{{\csc }^2}x} dx \cr & = - \int {{{\cot }^2}x\left( { - {{\csc }^2}x} \right)} dx + \int {{{\csc }^2}x} dx \cr & {\text{Integrate by using the power rule}} \cr & = - \frac{{{{\cot }^3}x}}{3} - \cot x + C \cr} $$

Work Step by Step

$$ - \frac{{{{\cot }^3}x}}{3} - \cot x + C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.