Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 507: 56

Answer

$${\text{True}}$$

Work Step by Step

$$\eqalign{ & \int {{{\tan }^4}x{{\sec }^5}x} dx \cr & {\text{Rewrite the integrand}} \cr & = \int {{{\left( {{{\tan }^2}x} \right)}^2}{{\sec }^5}x} dx \cr & = \int {{{\left( {{{\sec }^2}x - 1} \right)}^2}{{\sec }^5}x} dx \cr & {\text{Expand}} \cr & = \int {\left( {{{\sec }^4}x - 2{{\sec }^2}x + 1} \right){{\sec }^5}x} dx \cr & = \int {\left( {{{\sec }^9}x - 2{{\sec }^7}x + {{\sec }^5}x} \right){{\sec }^5}x} dx \cr & {\text{Therefore, the statement is True}}{\text{.}} \cr & {\text{True}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.