Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 507: 40

Answer

$$\frac{1}{4}{\sec ^3}x\tan x + \frac{3}{8}\sec x\tan x + \frac{3}{8}{\text{ln}}\left| {\sec x + \tan x} \right|{\text{ + C}}$$

Work Step by Step

$$\eqalign{ & \int {{{\sec }^5}x} dx{\text{ }} \cr & {\text{Integrate by parts}} \cr & u = {\sec ^3}x \Rightarrow du = 3{\sec ^3}x\tan x \cr & dv = {\sec ^2}x \Rightarrow v = \tan x \cr & \int {{{\sec }^5}x} dx = {\sec ^3}x\tan x - 3\int {\tan x} {\sec ^3}x\tan xdx \cr & \int {{{\sec }^5}x} dx = {\sec ^3}x\tan x - 3\int {{{\tan }^2}x} {\sec ^3}xdx \cr & {\text{Use the pythagorean identity}} \cr & \int {{{\sec }^5}x} dx = {\sec ^3}x\tan x - 3\int {\left( {{{\sec }^2}x - 1} \right)} {\sec ^3}xdx \cr & \int {{{\sec }^5}x} dx = {\sec ^3}x\tan x - 3\int {\left( {{{\sec }^5}x - {{\sec }^3}x} \right)} dx \cr & {\text{Simplify}} \cr & \int {{{\sec }^5}x} dx = {\sec ^3}x\tan x - 3\int {{{\sec }^5}x} dx + 3\int {{{\sec }^3}x} dx \cr & {\text{Collect like terms}} \cr & 4\int {{{\sec }^5}x} dx = {\sec ^3}x\tan x + 3\int {{{\sec }^3}x} dx \cr & {\text{Solve for }}\int {{{\sec }^5}x} dx \cr & \int {{{\sec }^5}x} dx = \frac{1}{4}{\sec ^3}x\tan x + \frac{3}{4}\int {{{\sec }^3}x} dx \cr & {\text{Recall that }}\int {{{\sec }^3}x} dx = \frac{1}{2}\sec x\tan x + \frac{1}{2}{\text{ln}}\left| {\sec x + \tan x} \right|{\text{ + C}} \cr & \int {{{\sec }^5}x} dx = \frac{1}{4}{\sec ^3}x\tan x + \frac{3}{8}\sec x\tan x + \frac{3}{8}{\text{ln}}\left| {\sec x + \tan x} \right|{\text{ + C}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.